Skip to main content

Kesimpulan

Ringkasan Eksekutif untuk Dosen Penguji


🎯 Tujuan Penelitian

Membuktikan bahwa Gitea + Gitea Runner + K3s lebih unggul dibanding Monolith Server dalam hal:

  1. Kemudahan Pengelolaan Service - lifecycle management (start, stop, restart, scale)
  2. Kemudahan Deployment - proses deploy dan rollback
  3. Kemudahan Monitoring - observability dan troubleshooting

📊 Hasil Utama

Time Savings: 75-85% Lebih Cepat

OperasiMonolithGitea + K3sSavings
Deploy to 3 environments15-30 menit3-5 menit80%
Rollback2-5 menit10-30 detik90%
Restart service5-10 menit1-2 menit75%
Scale service30-60 menit10-30 detik99%
Check logs5 menit30 detik90%
Troubleshoot15-60 menit5-15 menit70%

Downtime Reduction: Zero Downtime

SkenarioMonolithGitea + K3s
Deploy30-60 detik downtime0 detik
Rollback2-5 menit downtime0 detik
Restart5-10 detik downtime0 detik
Hotfix30-60 detik downtime0 detik

Error Rate Reduction: 80% Lebih Rendah

  • Monolith: ~15-20% human error rate
  • Gitea + K3s: < 5% error rate (automated)
  • Improvement: 80% error reduction 🎯

🏗️ Implementasi

Deployment Strategy: Branch-Based

Branch Development  →  Deploy ke Namespace development
Branch Staging → Deploy ke Namespace staging
Branch Production → Deploy ke Namespace production

Keunggulan:

  • ✅ 1 branch = 1 environment (clear mapping)
  • ✅ Auto deploy on merge
  • ✅ Auto merge downstream (prevent drift)
  • ✅ Pull Request approval gate
  • ✅ Full audit trail

Real Case Application

3 Microservices:

  • Users Service (Port 3001)
  • Products Service (Port 3002)
  • Orders Service (Port 3003) - bergantung pada Users & Products

Tech Stack:

  • Node.js + Express.js
  • Docker containerization
  • Kubernetes (K3s) orchestration

💡 Keunggulan Utama

1. Manage Service: Same Command, Beda Namespace

# Monolith: SSH ke 3 server berbeda
ssh dev-server "pm2 restart users"
ssh staging-server "pm2 restart users"
ssh prod-server "pm2 restart users"

# K3s: Same command, beda namespace saja
kubectl rollout restart deployment/users -n development
kubectl rollout restart deployment/users -n staging
kubectl rollout restart deployment/users -n production

2. Deployment: Git Push → Auto Deploy

# Monolith: 10+ manual steps × 3 services × 3 environments = 90 operations

# K3s: 1 git push → auto everything
git push origin development # Auto deploy to dev
# Merge PR → staging # Auto deploy to staging
# Merge PR → production # Auto deploy to prod + zero downtime

3. Monitoring: Centralized vs Scattered

# Monolith: SSH to each server, check logs manually

# K3s: Centralized dari 1 terminal
kubectl logs -f deployment/users -n production
kubectl top pods -n production
kubectl get pods -n production # Visual health status

📈 Multi-Environment Management

Monolith Hell vs K3s Heaven

AspekMonolithGitea + K3s
Environment Setup3 server terpisah atau path berbeda3 namespace di 1 cluster
Deploy ProcessSSH → git pull → npm install → restart (manual)git push → auto build → auto deploy
Environment ParityDrift inevitable (beda config/version)Identical (same manifest template)
Hotfix PropagationManual update 3x (sering lupa)Auto merge downstream
Config ManagementScattered .env filesConfigMap/Secrets per namespace
Audit TrailSSH logs? Chat history?Git history + PR + CI logs

🔄 Workflow Comparison

Normal Release Flow

Monolith:

  1. SSH ke dev-server
  2. Git pull + npm install
  3. Restart PM2
  4. Test manually
  5. Repeat untuk staging
  6. Repeat untuk production
  7. Time: 15-30 menit
  8. Downtime: 90-180 detik total

Gitea + K3s:

  1. Push ke branch development → auto deploy
  2. PR development → staging → auto deploy
  3. PR staging → production → auto deploy
  4. Time: 3-5 menit
  5. Downtime: 0 detik

Hotfix Flow

Monolith:

  1. SSH production
  2. Manual git pull + restart
  3. Hope it works 🙏
  4. Time: 10-15 menit
  5. Downtime: 30-60 detik
  6. Often forget to update staging/dev

Gitea + K3s:

  1. Push ke branch hotfix
  2. Auto build + deploy to production
  3. Auto merge to staging & development
  4. Time: 3-5 menit
  5. Downtime: 0 detik
  6. All environments synced automatically

🛡️ Reliability & Safety

FeatureMonolithGitea + K3s
Auto Health Check❌ None✅ Liveness + Readiness probes
Auto Recovery❌ Manual restart✅ Kubernetes auto-restart
Rollback Speed2-5 menit10-30 detik
Resource Isolation❌ Shared (risk contention)✅ Namespace + limits
Zero Downtime Deploy❌ No✅ Rolling update

💰 Cost Efficiency

Infrastructure Cost: Comparable

  • Monolith: 3 VM/server (dev, staging, prod)
  • K3s: 1 cluster dengan 3 namespace (resource-efficient)

Result: K3s lebih efisien dalam resource utilization

Operational Cost: 75-85% Reduction

  • Time savings: 75-85% faster operations
  • Error reduction: 80% fewer errors
  • Downtime elimination: Zero downtime = no revenue loss

ROI: Learning investment (~1-2 minggu) terbayar dengan daily time savings


🎓 Kesimpulan Akademis

Hipotesis: ✅ TERBUKTI

H1: Gitea + K3s mengurangi deployment time hingga 80%

  • Terbukti: 15-30 menit → 3-5 menit (83% reduction)

H2: Gitea + K3s mengurangi error rate hingga 70%

  • Terbukti: 15-20% → < 5% (80% reduction)

H3: Gitea + K3s meningkatkan consistency & reliability

  • Terbukti: Zero downtime, auto-healing, environment parity

Kontribusi Penelitian

  1. Praktis: Membuktikan K3s viable untuk SMEs (bukan hanya enterprise)
  2. Terukur: Data kuantitatif time savings, error rate, downtime
  3. Replikabel: Full implementation dapat direplikasi

Trade-off yang Jujur

Monolith Wins:

  • ✅ Learning curve lebih rendah
  • ✅ Setup awal lebih cepat (~30 menit vs 2 jam)
  • ✅ Familiar technology (SSH, PM2)

K3s Wins:

  • ✅ Operational efficiency (75-85% faster)
  • ✅ Zero downtime deployments
  • ✅ Auto-healing & reliability
  • ✅ Multi-environment management
  • ✅ Team collaboration (git-based)
  • ✅ Full audit trail

Rekomendasi: Untuk production environment yang serius, K3s adalah pilihan yang lebih unggul meskipun butuh learning investment di awal.


📂 Struktur Dokumentasi

Dokumentasi lengkap terdiri dari:

  1. Pendahuluan - Konteks & metodologi penelitian
  2. Real Case - Arsitektur aplikasi & deployment strategy (section 3)
  3. Operational Comparison - Detail perbandingan kemudahan operasional
  4. Environment Setup - Konfigurasi infrastruktur
  5. CI/CD Flow - Pipeline automation
  6. Test Plan - Metodologi pengujian
  7. Test Results - Data & analisis hasil
  8. Cost Analysis - Perbandingan biaya

🚀 Key Takeaways

Untuk Dosen Penguji

  1. Penelitian ini BUKAN tentang "K3s vs Kubernetes"

    • Ini tentang "Manual Deployment vs Automated Cloud-Native"
  2. Fokus pada 3 aspek kemudahan:

    • ✅ Manage Service (lifecycle, scaling, restart)
    • ✅ Deployment (speed, consistency, rollback)
    • ✅ Monitoring (observability, troubleshooting)
  3. Hasil terukur:

    • 75-85% time savings
    • 80% error reduction
    • 100% downtime elimination
    • 3x environment management efficiency
  4. Trade-off jujur:

    • K3s butuh learning investment (~1-2 minggu)
    • TAPI terbayar dengan daily operational excellence
  5. Applicable ke industri:

    • Real-world deployment strategy (branch-based)
    • Practical workflows (hotfix, rollback, multi-env)
    • Can be replicated by SMEs

📞 Pertanyaan yang Mungkin Muncul

Q: Apakah K3s cocok untuk perusahaan kecil?

A: Ya! K3s dirancang untuk lightweight deployment. Dapat run di 1 server kecil (2 CPU, 4GB RAM) untuk 3 environment sekaligus.

Q: Berapa lama learning curve untuk K3s?

A: ~1-2 minggu untuk basic kubectl commands. ROI tercapai dalam 1 bulan karena daily time savings 75-85%.

Q: Apakah zero downtime benar-benar 0 detik?

A: Ya, dengan rolling update. Pod baru started dulu, baru pod lama terminated. User tidak merasakan downtime.

Q: Bagaimana kalau cluster K3s down?

A:

  • Built-in high availability (multi-node)
  • Auto-restart pods
  • Lebih reliable daripada single monolith server

Q: Apakah butuh tim DevOps khusus?

A: Tidak. Developer dengan basic kubectl knowledge sudah cukup untuk operasional sehari-hari.


Terima kasih atas perhatiannya!

Untuk detail lengkap, silakan merujuk ke dokumentasi per-section sesuai kebutuhan.